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Brownian Motion    
 
 When a small particle is suspended in a fluid, it subjected to the impact gas or 
liquid molecules.  For ultra fine particles (colloids), the instantaneous momentum 
imparted to the particle varies random which causes the particle to move on an erotic path 
now known as Brownian motion.  Figure 1 illustrates the Brownian motion process.    
 
 
 
 
 
 
 
  
 
 
 
 
 

Figure 1. Schematics of a Brownian motion process. 
 
 
 The Brownian motion of a small particle in a stationary fluid in x-direction is 
governed by the following Langevin equation, 
 

 )t(nu
dt
du =β+ ,               (1) 

 
where u is the velocity of the particle, 
 
 τ=πµ=β /1mC/d3 c                                 (2) 
 
and n(t) is a white noise excitation due to the impact of fluid molecules on the particle. 
The intensity of noise is specified by its spectral intensity given as 
 

 
m
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where Kergk /1038.1 16−×=  is the Boltzmann constant and T is the temperature.  It 
should be emphasized that the Brown motion occurs in three dimensions and Equation 
(1) applies only to the x-component of the motion. 
 
 For the stochastic equation given by (1), using the standard linear system analysis, 
it follows that 
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where )(Suu ω is the power spectrum of the velocity of the Brownian particle, and )(H ω is  
the system function given by 
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Hence, 
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The autocorrelation of the particle velocity field defined as  )t(ut(u)(R )τ+=τ  (with a 
bar standing for the expected value) is the inverse Fourier transform of the power 
spectrum function. i.e.,  
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From (6) and (7) it follows that 
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 The mass diffusivity is defined as 
  

 )t(x
dt
d
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where  x(t) is the position of particle given by  
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Using (11), one finds 
 



   

ME437/537  G. Ahmadi 3

 ∫ ∫ τττ−τ=
t

0

t

0
2121uu

2 dd)(R)t(x                                 (12) 

 
Changing variables, after some algebra it follows that 
 

 ∫ τττ−=
t

0
uu

2 d)(R)t(2)t(x                                              (13) 

Thus          
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Using (6) or (9) in (14), we find 
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Fokker-Planck Approach 
 
 An alternative approach is to make use of the Fokker-Planck equation associated 
with the Langevin Equation given by (1).  That is  
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The stationary solution to the Fokker-Planck equation given by (16) is given as 
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with kTum 2 = . 
 
Brownian Motion in a Force Field 

 
 Consider the following Langevin equation: 
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where 
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x
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is a conservative force field. The corresponding Fokker-Planet equation for the transition 
probability density function is given as: 
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The stationary solution to (20) is given by  
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Using (19), we find 
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For a gravitational force field, 
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and  
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Computer Simulation Procedure 
 
 As noted before, the Brownian force n(t) may be modeled as a white noise 
stochastic process.   White noise is a zero mean Gaussian random process with a constant 
power spectrum given Equation (3).  Thus,  
 
 0)t(n =   )tt(S2)t(n)t(n 21nn21 −δπ=          (25) 
 
The following procedure was used by Ounis and Ahmadi (1992) and Li and Ahmadi 
(1993). 
 
•  Choose a time step .t∆   (The time step should much smaller than the particle 

relaxation time. 
•  Generate a sequence of uniform random numbers iU (between 0 and 1).  
•  Transform pairs of uniform random numbers to pairs of unit variance zero mean 

Gaussian random numbers.  The can be done using the following transformations: 
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211 U2cosUln2G π−=             (26) 

212 U2sinUln2G π−=             (27) 
 

•  Amplitude of the Brownian force then is given by 
 

t
SG)t(n nn

ii ∆
π

=              (28) 

 
•  The entire generated sample of Brownian force need to be shifted by tU∆ , where U 

is a uniform random number between zero and one. 
 
 

 
Example: Particle Dispersion and Deposition in a Viscous Sublayer  
 
 Ounis, Ahmadi and McLaughlin (1991) and Shams and Ahmadi (2000) studied 
dispersion and deposition of nano- and micro-particles in turbulent boundary layer flows. 
A sample simulated Brownian force for a 0.01 mµ particle is shown in Figure 3.  Here 
the wall units with *u/ν and 2*u/ν  being, respectively, the length and the time scales 
are used.  Note that the relevant scales the wall layer including the viscous sublayer are 
controlled by kinematic viscosity ν  and shear velocity u*.  The random nature of 
Brownian for is clearly seen form Figure 3.  

ni 

t 
∆t U∆t

Figure 2.  Numerically simulated Brownian force. 
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Figure 3.  Sample simulated Brownian force. 
 
 

 Using the definition of particle diffusivity, D, as given by (10), the variance of the 
particle position is given by   
 

Dt2)t(x 2 =              (29) 
 

Thus, for a given diffusivity, the variance of the spreading rate of particles may be 
evaluated from Equation (29).  
 
 To verify the Brownian dynamic simulation procedure, Ounis et al (1991) studied 
that special case of a point source in a uniform flow with U+ =U/u*=1.  For different 
particle diameters, Figure 4 displays the time variation of their simulated root mean 
square particle position. Here, for each particle size, 500 sample trajectories were 
evaluated, compiled and statistically analyzed.  The corresponding exact solutions given 
by Equation (29) are also shown in this figure for comparison.  It is seen that small nano-
meter sized particles spread much faster by the action of the Browning motion when 
compared with the larger micrometer sized particles. Figure 4 also shows that the 
Brownian dynamic simulation results for the mean square displacement are in good 
agreement with the exact solutions.  
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Figure 4.  Sample simulated root-mean square displacement for different particles. 
 

Ounis et la. (1991) performed a series of Lagrangian simulation studies for 
dispersion and deposition of particles emitted from a point source in the viscous sublayer 
of a turbulent near wall flow.   Figures 5, 6 and 7 show time variation of particle 
trajectory statistics for different diameters, for the case that the point source is at a 
distance of 0.5 wall units away from the wall.  In these simulation it is assumed that when 
particles touch the wall they will stick to it.  At every time step, the particle ordinates are 
statistically analyzed and the mean, standard deviation and the sample minimum and 
maximum were evaluated.  The points that the minimum curve touches the wall identify 
the locations of a deposited particle.  Figure 5 shows that 0.05 mµ particles have a 
narrow distribution and in the duration of 40 wall units none of these particle are 
deposited on the wall.  As the particle diameter becomes smaller, their spreading due to 
Brownian diffusion increases and a number of particles reach the wall.  For example, 
Figure s 6 shows that five 0.03 mµ particle are deposited on the wall in the duration of 40 
wall units, while Figure 7 indicates that 190 0.01 mµ  particles (out a sample of 500 
particles) are deposited on the wall.  Figures 5-7 further show that the Brownian diffusion 
of particles is strongly affected by their size.  This is because the power spectral intensity 
of Brownian force in inversely proportional to the square of diameter. 
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Figure 5.  Simulated trajectory statistics for 0.05 mµ particles. 

 

 
Figure 6.  Simulated trajectory statistics for 0.03 mµ particles. 
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Figure 7.  Simulated trajectory statistics for 0.01 mµ particles. 

 
Figure 8 shows variations of the number of deposited particles, tN , with time for 

a point source at a distance of 5.0zo =  wall units from the wall.  The solid lines in this 
figure are the exact solution for a diffusion model given as  
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It is seen that the Brownian dynamic simulation results and the diffusion equation 
analysis are in good agreement for the range of particle diameters studied.  Figure 8 also 
shows that as the particle diameter decreases, the number of deposited particles increases 
sharply.  Additional results (not shown here) indicate that the deposition rate decreases as 
the distance of source from the wall increases.  Figures 4-8 show that the Brownian 
motion process is a significant mechanism for nano-particle diffusion and wall 
deposition. 
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 Figure 8.  Comparison of the simulated number of deposited particles with the diffusion 
model given by Equation (30). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(30) 
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Java Applet for Brownian Motion  
 
 A Java Applet for analyzing Brownian motion of particles in laminar pipe flow is 
developed which is available at the course web site.  The program solves the particle 
equation of motion including the Brownian excitation 
 

)t()(1
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The Brownian force is simulated as a white noise process with an appropriate power 
spectral intensity.  The flow and particle parameters and time duration and sample size 
can be specifies.  The variance of the particle position is also compared with the exact 
solution to the diffusion equation given as    
 

 Dt2)t(2
y =σ         (32) 

 
Java Applet for particle trajectory analysis 
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Java Applet for comparison of variance of particle position with the exact solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


