### 2.3.3. Total breakup

Total breakup time is defined as the time when the drop (if a coherent drop persists) and all its fragments no longer undergo further breakup. Correlations for total breakup time are given by

$$
\begin{array}{lc}
T=6(\mathrm{We}-12)^{-0.25}, & 12 \leqslant \mathrm{We} \leqslant 18 \\
T=2.45(\mathrm{We}-12)^{0.25}, & 18 \leqslant \mathrm{We} \leqslant 45, \\
T=14.1(\mathrm{We}-12)^{0.25}, & 45 \leqslant \mathrm{We} \leqslant 351, \\
T=0.766(\mathrm{We}-12)^{0.25}, & 351 \leqslant \mathrm{We} \leqslant 2670, \tag{11}
\end{array}
$$

and

$$
\begin{equation*}
T=5.5, \quad W e \geqslant 2670, \tag{12}
\end{equation*}
$$

and compared with experimental data in figure 5.
The total breakup times, which are given by the above correlations, are for low-viscosity drops (On $<0.1$ ). Based on limited data, Gel'fand et al. (1975) proposed a correlation for total breakup time when viscosity is not negligible:

$$
\begin{equation*}
T=4.5\left(\mathrm{l}+1.2 \mathrm{On}^{1.64}\right), \quad \mathrm{We}<228 \tag{13}
\end{equation*}
$$

In the inviscid limit, the Gel'fand et al. expression is an oversimplification, and clearly [8]-[12] provide a more accurate representation of the existing data.

