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LETTERS

The purpose of this Letters section is to provide rapid dissemination of important new results in the fields regularly
covered by The Physics of Fluids. Results of extended research should not be presented as a series of letters in place of
comprehensive articles. Letters cannot exceed four printed pages in length, including space allowed for title, figures,

tables, references and an abstract limited to about 100 words.

Differential filters for the large eddy numerical simulation of turbulent flows

M. Germano

Department of Aerospace Engineering, Polytechnic of Torino, 10129 Torino, Italy
(Received 6 December 1985; accepted 24 February 1986)

Differential filters for the large eddy numerical simulation of turbulent flows are defined and their
properties are discussed. Their main advantages are that the correlations can be expressed exactly
in the so-called resolvable scale and the attenuation of the filtered function in the Fourier space

can be carefully controlled.

In the large eddy simulation of turbulent flow the mean
value f of a function f is defined by means of an integral
normalized filter!

Axta) = f G(x —x;a) f(x,t)d ?x', (n

where G is the kernel of the filter and a is a characteristic
length. The properties of these filters are
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where f and g are two generic functions, h and k two con-
stants, and f = f if /= const, so that the filtered Navier—
Stokes equations assume the form
du, ou, J u;u, 3p

=0, 4tk 2 v, (3)
o " ox, ox,

ox,

and the crucial problem is to model the term u,u,. A fa-
vored integral filter is the Gaussian one,>” with the kernel G
given by
372 _ x')2
G(x_x’;a) = (L) exp(_u) s 4)
T

a> a?

and if we introduce a system of polar coordinates r, ¢, ¢
centered in X, we can write

_ 32
f(x,ta) = (——%) ’ fexp( — i';—2-)f(r,19,¢,t)
ma a

Xr2sinddrdddg, (5)

where ¥ = (x —x')°
In this letter we will analyze the properties of an integral
filter given by the expression

]'(x,t;a) = f exp( — —f—)f (r,3,0,0)rsind drdd dg,
47a? a
(6)
with a kernel that has the form
G(x — x'a) = 1 exp(— |x—x'|/a) ’ N

47a® |x —x'|
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and we notice that the singularity is completely removed by
the integration. This filter is interesting because it is easily
shown that (6) is a particular sclution® of the partial differ-
ential equation

f=F-avf (8)
and the kernel (7) is the related Green’s function extended
to an unbounded domain, so that the differential operator
(8) can be interpreted as the inverse of the integral operator
(6).

By means of this inverse differential operator we can
express exactly the correlation term in the so-called resolva-
ble scale. In fact, we can write, following (8):

Uu, = (l_‘l - azvzﬁi ) (ak - azvzﬂn: ) ’ (9)

and considering that

ﬁiak = l—liﬁk —02V2 uiﬁk y

we have, in terms of 7, = wu,u, — 4,1,

T = 2a°Vu,Vu, +a*(V°E,) (Vi) . (10)
We emphasize the fact that (10) represents an exact expres-
sion coherent with the filter (7) and obtained without new

assumptions, and it is interesting to notice that in first ap-
proximation we have

Tik ’="202Vl_l,-'V17k 5 (11)
that is the Clark et al.* model for the Leonard terms plus the
Cross terms.

In order to appreciate the analogies between the filter

(7) and the Gaussian filter (4_) we notice that the Gaussian
filter gives a filtered function fsuch that

I _ vy, (12)
Jde

where € = a?/24, so that assuming
S _f—S (13)
de €

we have in first approximation a differential relation
between fand fsimilar to (8)
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f=f—€vF. (14)
We stress the fact that}"must be considered a function of €, so
that when € = 0, f = £, and we notice that the Gaussian filter
corresponds in some sense to a diffusive process of the origi-
nal function f'in €. Finally, considering the transfer function
in Fourier space K we have for the Gaussian filter

fK,te) = f(Ktexp( —€[K|?), (15)
and for the filter expressed by (7)
r SIK)
Kta)=——""—, 16
f(Kta) T K (16)

as can be calculated directly from the differential relation
(8), so that the two transfer functions become equivalent in
the limit a—0.

The results obtained can be generalized in various
forms, including a larger class of differential filters (that is,
linear integral filters whose inverse is exactly given by a dif-
ferential one). First, note that the one-dimensional version
of filter (7) is given by the expression

G(x _x';a) — Lexp( — M) R
2a a

17)
so that the mean value f

fxta) = L fw exp( — M)f(x',t)a’x
2a J_. a

is a particular solution of the ordinary differential equation

(18)

_ 7 247
f=f—a el
Also note that the results can be easily extended to aniso-
tropic filters in which £ and f are related by the differential
elliptic expression
- J 27
f=I = o
where a;; are constant terms and the quadratic form e, x; x;
is always positive. In fact we can always reduce this expres-
sion to the canonic form (8) with a linear change of coordi-
nates,* and then we can assume as a solution the same inte-
gral filter (7). In this case we have

(19)

(20)

du,; du; 4%, a%u;
Ty = 2ay — 4 aua,, . 21
ox, 0x, dx, dx, Ix, dx,

It is interesting to see that the transfer function can be care-
fully controlled in the wave space K by changes in the coeffi-
cients a;

SK,1)
1+a,KK,’
where we stress the fact that there is always an attenuation of
the filtered function f, owing to the ellipticity of the differen-
tial operator (20).

In this Letter it has not been necessary to consider expli-
citly the fluctuations /' = f — f. However, it is interesting to
interpret the results in terms of the well-known Leonard
stresses

fKpa,) = (22)

Lkl = Ekﬂz - akl_‘z ’
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the subgrid-scale cross stresses
Cu= upu;, +uu,

and the subgrid-scale Reynolds stresses
R, = uzuj.

In the case of the isotropic filter (7) we have in particular

u = —@Vi,, Ly=aV( ),
Cu=— az(ﬂkvzl_h + ﬂlvzﬁk) ’ (23)
Rkl = 04(V21_lk)(V2i1'1) ’

and we notice again the strong analogy of these terms with
previous approximate evaluations.’

In conclusion we think that it would be interesting to
test numerically differential filters given by the expression
(8) or by the more general form (20) in the case of nonho-
mogeneous turbulence. In addition we mention that histori-
cally the idea of filtering functions by means of differential
filters is not new in turbulence studies. Kampé de Fériet and
Betchov® analyzed in the past functions filtered in time by
the low-pass integral filter

Fx7) = if exp( = ")f(x,t')dt' . (24)
—w T

T

particular solution of the differential equation

r=7+4,
dt

but to the knowledge of the author they have never been used
in modeling turbulent stresses. Finally, the author is indebt-
ed to the referee for two important observations that better
clarify the limits of this work and stimulate future research.
The first one regards the fact that formally the use of the
filters proposed by the author is equivalent to a direct simu-
lation with no model but with different dependent variables.
In the filtered equations the nonlinear terms will still cause a
loss of information; the real duty of models is to minimize
this error. In the second observation the referee notes that
the filters proposed by the author avoid the inconsistency
between the filters used and the model forms, inconsistency
that is at the origin of the disagreement between the models
and the computations in Clark ez al.,” but this consistency
does not necessarily mean that they are useful for large eddy
simulations where significant loss of information must al-
ways be modeled.

At the present stage of the research, which is in progress,
it is very difficult to say if the filtered Navier—Stokes equa-
tions, that formally become integrodifferential equations,
improve the numerical capturing of the large scale structure,
or in other words are less chaotic than the original ones. We
notice that the class of differential filters is very large, they
can be extended also to the time, and potentially every
Green’s function associated with a differential operator in an
unbounded or bounded domain can be interpreted as the
kernel of an integral filter that mathematically represents
the inverse operator. The author is presently engaged in the
study of the properties of such filters, their adaptability to
particular flows, and their algebra. Obviously their actual
usefulness in large eddy simulation must be verified.

(25)

Letters 1756



'A. Leonard, Adv. Geophys. A 18, 237 (1974).

2J. H. Ferziger, AIAA 1. 15, 1261 (1977).

3R. S. Rogallo and P. Moin, Ann. Rev. Fluid Mech. 16, 99 (1984).

4C. Miranda, Partial Differential Equations of Elliptic Type (Springer, Ber-
lin, 1970), p. 67.

Differential filters of elliptic type

M. Germano

R. A. Clark, J. H. Ferziger, and W. C. Reynolds, J. Fluid Mech. 91, 1
(1979).

6). Kampé de Fériet and R. Betchov, Proc. K. Ned. Akad. Wet. 53, 389
(1951).

Department of Aerospace Engineering, Polytechnic of Torino, 10129 Torino, Italy
(Received 27 December 1985; accepted 28 January 1986)

Linear differential filters, i.e., filters in which the filtered function fand the original function fare
connected by a linear differential equation, are studied on a general basis concerning the elliptic
operators of second order. In addition, a particular example of a parabolic filter depending on
space and extended to past times is given, and its interest in the context of the large eddy

simulation of turbulence is discussed.

In the large eddy simulation of turbulent flows a correspon-
dence between the filtered function f and the original func-
tion fis established in the form'

f(x,ta) =J’G(x—x’;a)f(x’,t)d3x’, )]

where x is a set of Cartesian coordinates, ¢ is the time, and a is
a reference length.

In a previous article” it was proved the existence of lin-
ear differential filters, i.e., filters in which fand fare connect-
ed by a linear differential equation, that are endowed with
interesting properties concerning the correlations. In this
Letter a general theory of these linear differential filters con-
cerning the second-order linear operators of the elliptic type
is outlined. Let us consider the linear operator

ou d%u

Mu)=u+aq; Ew a; o, axj, a; =a;, (2)
where @; and a; are given functions of x; and a;x;x; is
always definite positive. The principal fundamental solu-

i

tion® G(x,x’) of the equation M(u) = Ois a solution defined '

in the whole space, such that it satisfies the following
bounds:

G=0(1/r),

where r = |x — x/|.

We notice that G has an integrable singularity when
x = x’. It can be shown? first that Eq. (2) admits only one
principal fundamental solution and secondly that for every
regular function f(x) going to infinity when |X|— o at most
like |x|?, with p arbitrary positive number, the following
relation holds:

r—0; and G=0(e" "),

r—co ,

f(x) =JG(x,x')f(X’)d3X’, 3
where
= af Y
= L, —t 4)
ST e T % o, (
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We notice that these properties can be interpreted as
properties of a class of filters in which the kernel is the princi-
pal fundamental solution of the homogeneous equation (2)
and in which the filtered function fand the original function
fare connected not only by the integral relation (3) but also
by the differential bound expressed by (4). This class of
filters has the properties

f+e=r+zg, (5)
kf =kf, if k=const, 6)
fe
- af 37 \/(- Jg 3%
= +a,———a i T Oy >
(f a Ix; % Ix; axj) (g+ “ ax; % Ix; ax,.)
€))]

where f and g are two generic functions, and we notice in
addition that the kernel G is normalized so that

f=f if f=const. (8)
With regard to the filtered value of a generic derivative

3f /dx, we notice that G(x,x’) is not necessarily a function

of x — x’ and the consequence is that generally the process of
derivation and the process of filtering do not commute.
However, we can write, deriving Eq. (4),

- _ ) _

LT o2 (L), 2 ()

ax,  0x, ax; \ dx, " Ox; Ox; \ 9%,
da; 3f Oa, I

i
dx, dx, dx, Ix, dx;’

€))

and obviously we also have

LT, 0 (T, o (T,

ax, Ix, " ox, \ ox, % Ix, dx; \ Ox;

(10)
so that we obtain
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