> This is alpha equation:
> $\frac{\partial \alpha_{1}}{\partial t}+\nabla \cdot\left(\mathbf{U} \alpha_{1}\right)+\nabla \cdot\left[\mathbf{U}_{\mathbf{r}} \alpha_{1}\left(1-\alpha_{1}\right)\right]$
> $=\alpha_{1} \dot{v}_{v \alpha}+\left(1-\alpha_{1}\right) \dot{v}_{c \alpha}=\left(\dot{v}_{v \alpha}-\dot{v}_{c \alpha}\right) \alpha_{1}+\dot{v}_{c \alpha}$
> $=S_{p} \alpha_{1}+S_{u}$

ABOUT Explicitly solving alpha equation:
$\frac{\partial \alpha_{1}}{\partial t}+\nabla \cdot\left(\mathbf{U} \alpha_{1}\right)+\nabla \cdot\left[\mathbf{U}_{\mathbf{r}} \alpha_{1}\left(1-\alpha_{1}\right)\right]$
$=\left(\dot{v}_{v \alpha}-\dot{v}_{c \alpha}\right) \alpha_{1}+\dot{v}_{c \alpha}=S_{p} \alpha_{1}+S_{u}$
Discretize the equation as:
$\frac{\alpha_{1}-\alpha_{1}^{0}}{\Delta t}+\frac{\int \nabla \cdot\left(\mathbf{U} \alpha_{1}\right) d V}{\Delta V}+\frac{\int \nabla \cdot\left[\mathbf{U}_{\mathbf{r}} \alpha_{1}\left(1-\alpha_{1}\right)\right] d V}{\Delta V}=S_{p} \alpha_{1}+S_{u}$
And explicit solution is [this is what is done in function of MULE::explicitSolve()]
$\alpha_{1}=\frac{\frac{\alpha_{1}^{0}}{\Delta t}+S_{u}-\frac{\int \nabla \cdot\left(\mathbf{U} \alpha_{1}\right) d V}{\Delta V}+\frac{\int \nabla \cdot\left[\mathbf{U}_{\mathbf{r}} \alpha_{1}\left(1-\alpha_{1}\right)\right] d V}{\Delta V}}{\frac{1}{\Delta t}-S_{p}}$
[redundant divU?]
[bug: divU should not appear in Su term]

